skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vines, S K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract During periods of increased geomagnetic activity, perturbations within the terrestrial magnetosphere are known to induce currents within conducting materials, at the surface of Earth through rapid changes in the local magnetic field over time (dB/dt). These currents are known as geomagnetically induced currents and have potentially detrimental effects on ground based infrastructure. In this study we undertake case studies of five geomagnetic storms, analyzing a total of 19 days of 1‐s SuperMAG data in order to better understand the magnetic local time (MLT) distribution, size, and occurrence of “spikes” indB/dt, with 131,447 spikes indB/dtexceeding 5 nT/s identified during these intervals. These spikes were concentrated in clusters over three MLT sectors: two previously identified pre‐midnight and dawn region hot‐spots, and a third, lower‐density population centered around 12 MLT (noon). The noon spike cluster was observed to be associated with pressure pulse impacts, however, due to incomplete magnetometer station coverage, this population is not observed for all investigated storms. The magnitude of spikes indB/dtare determined to be greatest within these three “hot‐spot” locations. These spike occurrences were then compared with field‐aligned current (FAC) data, provided by the Active Magnetospheric Planetary Electrodynamic Response Experiment. Spikes are most likely to be co‐located with upward FACs (56%) rather than downward FACs (30%) or no FACs (14%). 
    more » « less
  2. Abstract A necessary condition for the generation of Geomagnetically Induced Currents (GICs) that can pose hazards for technological infrastructure is the occurrence of large, rapid changes in the magnetic field at the surface of the Earth. We investigate the causes of such events or “spikes” observed by SuperMAG at auroral latitudes, by comparing with the time‐series of different types of geomagnetic activity for the duration of 2010. Spikes are found to occur predominantly in the pre‐midnight and dawn sectors. We find that pre‐midnight spikes are associated with substorm onsets. Dawn sector spikes are not directly associated with substorms, but with auroral activity occurring within the westward electrojet region. Azimuthally‐spaced auroral features drift sunwards, producing Ps6 (10–20 min period) magnetic perturbations on the ground. The magnitude of is determined by the flow speed in the convection return flow region, which in turn is related to the strength of solar wind‐magnetospheric coupling. Pre‐midnight and dawn sector spikes can occur at the same time, as strong coupling favors both substorms and westward electrojet activity; however, the mechanisms that create them seem somewhat independent. The dawn auroral features share some characteristics with omega bands, but can also appear as north‐south aligned auroral streamers. We suggest that these two phenomena share a single underlying cause. The associated fluctuations in the westward electrojet produce quasi‐periodic negative excursions in the AL index, which can be mis‐identified as recurrent substorm intensifications. 
    more » « less
  3. Abstract New, open access tools have been developed to validate ionospheric models in terms of technologically relevant metrics. These are ionospheric errors on GPS 3D position, HF ham radio communications, and peak F‐region density. To demonstrate these tools, we have used output from Sami is Another Model of the Ionosphere (SAMI3) driven by high‐latitude electric potentials derived from Active Magnetosphere and Planetary Electrodynamics Response Experiment, covering the first available month of operation using Iridium‐NEXT data (March 2019). Output of this model is now available for visualization and download viahttps://sami3.jhuapl.edu. The GPS test indicates SAMI3 reduces ionospheric errors on 3D position solutions from 1.9 m with no model to 1.6 m on average (maximum error: 14.2 m without correction, 13.9 m with correction). SAMI3 predicts 55.5% of reported amateur radio links between 2–30 MHz and 500–2,000 km. Autoscaled and then machine learning “cleaned” Digisonde NmF2 data indicate a 1.0 × 1011 el. m3median positive bias in SAMI3 (equivalent to a 27% overestimation). The positive NmF2 bias is largest during the daytime, which may explain the relatively good performance in predicting HF links then. The underlying data sources and software used here are publicly available, so that interested groups may apply these tests to other models and time intervals. 
    more » « less
  4. Abstract High‐Intensity Long‐Duration Continuous AE Activity (HILDCAA) intervals are driven by High Speed solar wind Streams (HSSs) during which the rapidly‐varying interplanetary magnetic field (IMF) produces high but intermittent dayside reconnection rates. This results in several days of large, quasi‐periodic enhancements in the auroral electrojet (AE) index. There has been debate over whether the enhancements in AE are produced by substorms or whether HILDCAAs represent a distinct class of magnetospheric dynamics. We investigate 16 HILDCAA events using the expanding/contracting polar cap model as a framework to understand the magnetospheric dynamics occurring during HSSs. Each HILDCAA onset shows variations in open magnetic flux, dayside and nightside reconnection rates, the cross‐polar cap potential, and AL that are characteristic of substorms. The enhancements in AE are produced by activity in the pre‐midnight sector, which is the typical substorm onset region. The periodicities present in the intermittent IMF determine the exact nature of the activity, producing a range of behaviors from a sequence of isolated substorms, through substorms which merge into one‐another, to almost continuous geomagnetic activity. The magnitude of magnetic fluctuations,dB/dt, in the pre‐midnight sector during HSSs is sufficient to produce a significant risk of Geomagnetically Induced Currents. 
    more » « less
  5. Abstract Magnetic reconnection occurring between the interplanetary magnetic field (IMF) and the dayside magnetopause causes a circulation of magnetic flux and plasma within the magnetosphere, known as the Dungey cycle. This circulation is transmitted to the ionosphere via field‐aligned currents (FACs). The magnetic flux transport within the Dungey cycle is quantified by the cross‐polar cap potential (CPCP or transpolar voltage). Previous studies have suggested that under strong driving conditions the CPCP can saturate near a value of 250 kV. In this study we investigate whether an analogous saturation occurs in the magnitudes of the FACs, using observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. The solar wind speed, density and pressure, theBzcomponent of the IMF, and combinations of these, were compared to the concurrent integrated current magnitude, across each hemisphere. We find that FAC magnitudes are controlled most strongly by solar wind speed and the orientation and strength of the IMF. FAC magnitude increases monotonically with solar wind driving but there is a distinct knee in the variation around IMFBz = −10 nT, above which the increase slows. 
    more » « less
  6. Abstract We investigate a 15‐day period in October 2011. Auroral observations by the Special Sensor Ultraviolet Spectrographic Imager instrument onboard the Defense Meteorological Satellite Program F16, F17, and F18 spacecraft indicate that the polar regions were covered by weak cusp‐aligned arc (CAA) emissions whenever the interplanetary magnetic field (IMF) clock angle was small, |θ| < 45°, which amounted to 30% of the time. Simultaneous observations of ions and electrons in the tail by the Cluster C4 and Geotail spacecraft showed that during these intervals dense (≈1 cm−3) plasma was observed, even as far from the equatorial plane of the tail as |ZGSE| ≈ 13RE. The ions had a pitch angle distribution peaking parallel and antiparallel to the magnetic field and the electrons had pitch angles that peaked perpendicular to the field. We interpret the counter‐streaming ions and double loss‐cone electrons as evidence that the plasma was trapped on closed field lines, and acted as a source for the CAA emission across the polar regions. This suggests that the magnetosphere was almost entirely closed during these periods. We further argue that the closure occurred as a consequence of dual‐lobe reconnection. Our finding forces a significant re‐evaluation of the magnetic topology of the magnetosphere during periods of northwards IMF. 
    more » « less
  7. Abstract A new technique has been developed to determine the high‐latitude electric potential from observed field‐aligned currents (FACs) and modeled ionospheric conductances. FACs are observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), while the conductances are modeled by Sami3 is Also a Model of the Ionosphere (SAMI3). This is a development of the Magnetosphere‐Ionosphere Coupling approach first demonstrated by Merkin and Lyon (2010),https://doi.org/10.1029/2010ja015461. An advantage of using SAMI3 is that the model can be used to predict total electron content (TEC), based on the AMPERE‐derived potential solutions. 23 May 2014 is chosen as a case study to assess the new technique for a moderately disturbed case (min Dst: −36 nT, max AE: 909 nT) with good GPS data coverage. The new AMPERE/SAMI3 solutions are compared against independent GPS‐based TEC observations from the Multi‐Instrument Data Analysis Software (MIDAS) by Mitchell and Spencer (2003), and against Defense Meteorological Satellite Program (DMSP) ion drift data. The comparison shows excellent agreement between the location of the tongue of ionization in the MIDAS GPS data and the AMPERE/SAMI3 potential pattern, and good overall agreement with DMSP drifts. SAMI3 predictions of high‐latitude TEC are much improved when using the AMPERE‐derived potential as compared to Weimer's (2005),https://doi.org/10.1029/2005ja011270model. The two potential models have substantial differences, with Weimer producing an average 77 kV cross‐cap potential versus 60 kV for the AMPERE‐derived potential. The results indicate that the 66‐satellite Iridium constellation provides sufficient resolution of FACs to estimate large‐scale ionospheric convection as it impacts TEC. 
    more » « less
  8. Abstract The sub‐auroral polarization stream (SAPS) is a region of westward high velocity plasma convection equatorward of the auroral oval that plays an important role in mid‐latitude space weather dynamics. In this study, we present observations of SAPS flows extending across the North American sector observed during the recovery phase of a minor geomagnetic storm. A resurgence in substorm activity drove a new set of field‐aligned currents (FACs) into the ionosphere, initiating the SAPS. An upward FAC system is the most prominent feature spreading across most SAPS local times, except near dusk, where a downward current system is pronounced. The location of SAPS flows remained relatively constant, firmly inside the trough, independent of the variability in the location and intensity of the FACs. The SAPS flows were sustained even after the FACs weakened and retreated polewards with a decline in geomagnetic activity. The observations indicate that the mid‐latitude trough plays a crucial role in determining the location of the SAPS and that SAPS flows can be sustained even after the magnetospheric driver has weakened. 
    more » « less
  9. Abstract The existence of Birkeland magnetic field‐aligned current (FAC) system was proposed more than a century ago, and it has been of immense interest for investigating the nature of solar wind‐magnetosphere‐ionosphere coupling ever since. In this paper, we present the first application of deep learning architecture for modeling the Birkeland currents using data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). The model uses a 1‐hr time history of several different parameters such as interplanetary magnetic field (IMF), solar wind, and geomagnetic and solar indices as inputs to determine the global distribution of Birkeland currents in the Northern Hemisphere. We present a comparison between our model and bin‐averaged statistical patterns under steady IMF conditions and also when the IMF is variable. Our deep learning model shows good agreement with the bin‐averaged patterns, capturing several prominent large‐scale features such as the Regions 1 and 2 FACs, the NBZ current system, and the cusp currents along with their seasonal variations. However, when IMF and solar wind conditions are not stable, our model provides a more accurate view of the time‐dependent evolution of Birkeland currents. The reconfiguration of the FACs following an abrupt change in IMF orientation can be traced in its details. The magnitude of FACs is found to evolve with e‐folding times that vary with season and MLT. When IMF Bz turns southward after a prolonged northward orientation, NBZ currents decay exponentially with an e‐folding time of∼25 min, whereas Region 1 currents grow with an e‐folding time of 6–20 min depending on the MLT. 
    more » « less